Конструкторы (в Кип-версии) приложили немало усилий, чтобы «Эндюранс» был устойчив к деформациям, но при этом, подвергаясь воздействию приливных сил, значительно превышающих ожидаемые, мог деформироваться без разрушения.

Взрыв на орбите вокруг планеты Манн

Такой подход к конструированию корабля приносит свои плоды, когда доктор Манн невольно инициирует сильный взрыв, который размыкает кольцо «Эндюранс», уничтожает два модуля и еще два повреждает (рис. 20.2).

Интерстеллар - _158.jpg

Интерстеллар - _159.jpg

Рис. 20.2. Вверху: взрыв на «Эндюранс», выше — посадочный модуль, ниже — планета Манн. (Десять радиальных лучей света не имеют прямого отношения к взрыву, это эффект светорассеивания в объективе камеры.) Внизу: поврежденный взрывом «Эндюранс» (Кадры из «Интерстеллар», с разрешения «Уорнер Бразерс».)

Взрыв заставляет кольцо вращаться с такой скоростью, что его модули подвергаются центробежной силе величиной в 70g (то есть в 70 раз больше притяжения Земли). Несмотря на это, разомкнутое кольцо не продолжает ломаться, а модули не сталкиваются друг с другом. Это, в Кип-версии, результат блестящей работы искусных инженеров, рассчитавших конструкцию на наихудшие условия!

Кстати говоря, я приятно поражен тем, как в фильме показан взрыв. В космосе взрывы беззвучны, поскольку там нет воздуха, в котором распространялись бы звуковые волны. И взрыв «Эндюранс» беззвучен. Пламя от такого взрыва должно быстро погаснуть, поскольку в космосе нет кислорода, который бы его подпитывал. И в фильме пламя гаснет быстро. Пол Франклин рассказал мне, скольких усилий стоил его команде этот взрыв, ведь он был снят на съемочной площадке, а не нарисован на компьютере. Еще один пример того, как тщательно Кристофер Нолан придерживался научной достоверности.

Разговор об окрестностях Гаргантюа привел нас к физике планет (приливная деформация, цунами, приливные боры…) и далее, через колебания Гаргантюа и поиск следов органической жизни, — к инженерии (конструкция «Эндюранс» и последствия взрыва). Как бы ни любил я эти темы — а я проводил исследования или писал учебники по большинству из них, — не они предмет моей главной страсти. Моя главная страсть — это экстремальная физика, физика на границе человеческих познаний и за ними. Об этом я сейчас и расскажу.

VI

ЭКСТРЕМАЛЬНАЯ ФИЗИКА

Интерстеллар - _160.jpg

Четвертое и пятое измерения

Время как четвертое измерение

Интерстеллар - _28.jpg

Пространство нашей Вселенной обладает тремя осями координат: «верх — низ», «восток — запад» и «север — юг». Однако чтобы пообедать с подругой, придется договориться не только о месте встречи, но и о времени. В этом смысле время — четвертая ось координат. Но при этом время отличается от пространственных измерений. Мы можем двигаться на запад или на восток — куда захотим, туда и пойдем. Однако явившись к тому самому обеду, мы не можем внезапно перенестись во времени назад. Как бы мы ни старались, единственный путь — двигаться во времени вперед, и законы теории относительности гарантируют это65.

И все же время — это четвертое измерение нашей Вселенной. Сцена нашей жизни — четырехмерное пространство — время: три пространственных измерения и одно временное.

Когда мы, физики, исследуем пространство — время с помощью экспериментов и расчетов, выясняется, что пространство и время во многом схожи. Простой пример: куда бы мы ни смотрели, мы смотрим в прошлое, поскольку свету нужно время, чтобы дойти до наших глаз. Наблюдая квазар, находящийся в миллиарде световых лет от нас, мы видим, каким он был миллиард лет назад, когда лучи света, пришедшие в наш телескоп, только начали свой путь.

Пример посложнее: если вы относительно меня, находящегося на Земле, двигаетесь с большой скоростью, наши мнения по поводу того, синхронно ли произошли некоторые события, могут разойтись. Вам может показаться, что два взрыва, один на Солнце, а другой на Луне, произошли одновременно, тогда как для меня взрыв на Луне произошел на пять минут раньше, чем на Солнце. Для вас разница между взрывами — вопрос пространства, тогда как в моем случае придется добавить «координату» времени.

Такое смешение пространства и времени может показаться сложным для понимания, но оно лежит в основе природы нашей Вселенной. Впрочем, в этой книге (за исключением главы 30) мы можем не обращать на это внимания.

Есть ли балк на свете

Интерстеллар - _29.jpg

На иллюстрациях к этой книге я изображаю нашу Вселенную как искривленную двумерную мембрану (брану), расположенную в трехмерном балке (как, например, на рис. 21.1). Разумеется, в действительности наша брана имеет три пространственных измерения, а балк — четыре, но мне нелегко такое изобразить, так что обычно я опускаю по одному измерению.

Интерстеллар - _161.jpg

Рис. 21.1. Маленькая черная дыра, падающая по спирали в большую черную дыру: вид из балка, одно пространственное измерение опущено (Рисунок Дона Дэвиса по моему наброску.)

Существует ли балк на самом деле, в реальности, или это лишь плод нашего воображения? Вплоть до восьмидесятых большинство физиков, включая меня, считали балк вымыслом.

Но как же может он быть вымыслом? Разве мы не знаем наверняка, что наше пространство искривлено? Неужто обмен радиосигналами с аппаратами «Викинг» не подтвердил это искривление с высокой точностью (см. главу 4)? Подтвердил… А раз наше пространство искривлено, разве не должно оно прогибаться в некое пространство с большим количеством измерений — в балк?

Нет, не обязательно. Вполне возможно, чтобы наша Вселенная искривлялась и без участия многомерного балка. Мы, ученые, можем выразить искривление нашей Вселенной математически, не привлекая для этого балк. Формулировать законы теории относительности, которые управляют искривлением, можно без участия балка. В сущности, именно так почти всегда мы и поступаем. До восьмидесятых балк был для нас не более чем вспомогательным построением. Построением, позволяющим лучше понять смысл наших расчетов, а также общаться на эту тему друг с другом и с людьми, далекими от физики. Итак, вспомогательное построение, а не явление реальности.

Но что значит «реальный балк»? И как мы можем проверить его реальность? У нас были бы доказательства существования балка, если бы он влиял на наши измерения. И до восьмидесятых мы не видели, каким образом это может происходить.

Но в 1984 году все изменилось, и изменилось в корне. Майкл Грин из Лондонского университета и Джон Шварц из Калтеха совершили революцию в области квантовой гравитации66. Однако — вот так сюрприз! — их рассуждения имели смысл лишь при условии, что наша Вселенная — это брана, находящаяся в балке, у которого одно временное и девять пространственных измерений. То есть в балке, у которого на шесть пространственных измерений больше, чем у нашей браны. Согласно так называемой теории суперструн, которой следовали Грин и Шварц, высшие измерения балка влияют на нашу брану различными способами и, когда человеческие технологии достигнут определенного уровня, эти влияния можно будет измерить в ходе физических экспериментов. И, возможно, это позволит совместить законы квантовой физики с законами эйнштейновской теории относительности.